Transforming Waste Plastic Into An Alternative Fuel
Print this Article | Send to Colleague
Student researchers at Northeastern University have designed an apparatus to convert plastic waste into clean energy while minimizing the release of harmful emissions.
Under the leadership of Yiannis Levendis, distinguished professor of mechanical and industrial engineering, a team of undergraduate and graduate engineering students developed a waste combustor, which breaks down non-biodegradable plastics to create an alternative source of fuel.
Their prototype was featured at the fifth annual MIT Energy Conference this past March. The team worked for nine months on the research, which, for the undergraduates, was their senior capstone project.
Self-sustainability is the key to the double-tank combustor design. Plastic waste is first processed in an upper tank through pyrolysis, which converts solid plastic into gas. Next, the gas flows to a lower tank, where it is burned with oxidants to generate heat and steam. The heat sustains the combustor while the steam can be used to generate electric power.
Levendis, who has pursued research on the combustion of plastics and other post-consumer wastes for the past 20 years, is currently focusing on the concept of vaporizing solid plastic waste, which would reduce levels of harmful emissions during the combustion process.
According to Laskowski, calculations show that the new technology has the potential of replacing up to 462 million gallons of petroleum in the United States alone, if all recycled plastics were to be processed.
"We are currently consuming highly-priced conventional premium fuels (to produce electricity). The fuel developed using this system will lower the cost of electricity for future generations," Levendis said. |